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Abstract

A wall-sided, shallow rectangular shape is usually con-
sidered for 
oating runways in relatively sheltered loca-
tions. The Mega-Float project of Japan is an example to
this. Such very large 
oating structures (VLFS) will be
quite 
exible under wave action and thus they must be
protected by breakwaters. In OCEANS '98 conference, a
new approach which is based on the Green-Naghdi the-
ory, was proposed by [1] to determine the dynamic re-
sponse of a 
oating runway in the absence of a shoreline
or breakwater. The new method was used during a para-
metric study of a mat-type runway, and it was shown
to be much more e�cient than other numerical methods
routinely used to study the dynamics of conventional-
sized o�shore structures. In this work, we extend the
study of the same problem by including the presence of
a breakwater, and to irregular seas de�ned by a spectral
formula. We also re�ne the numerical model that was
used before. The numerical e�ciency is improved fur-
ther by adopting the eigenfunction expansion method of
[2]. Using this improved model, the response amplitude
operators and motion response spectra of the runway dis-
placement are obtained in the presence of a breakwater
and in long-crested random seas.

I- Introduction

Mat-type 
oating runways are generally planned to be
located near shore and protected by breakwaters. To de-
termine an optimal location of the 
oating runway and
breakwater, one needs an e�cient numerical tool to es-
timate the hydroelastic response of the runway in deter-
ministic and random waves.
The hydroelastic response of a 
oating mat has typi-

cally been treated by panel methods in the frequency do-
main. The 
oating runway is modeled as either a three-
dimensional elastic body, see [3], or a thin elastic plate,
see [4], [5], and the entire surface of the elastic body is
discretized into panels to obtain the hydrodynamic co-
e�cients for assumed modes of elastic deformation or
to couple the 
uid and structure directly. Because the
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length of the incident wave is smaller than the runway
length and, in some cases, even its beam, one needs a
large number of modes and panels to obtain su�cient
accuracy. If we denote the length ratio between the
runway-length and wavelength scales as N , the number
of unknowns is O(N2) and the number of Green-function
evaluations is O(N4) when we use a panel method. This
presents di�culties in using the panel methods as quan-
titative analysis tools for design. If one further needs to
consider the interaction of the 
oating structure with a
shoreline and breakwater, then it is doubtful that a con-
ventional panel method can be used for design purposes.

In this study, we use a numerical method where the
number of unknowns is reduced to O(N) and the Green-
function evaluations to O(N2). Furthermore, the Green
function used in the present method is much simpler than
the one used in panel methods. With this improved nu-
merical e�ciency, this method has been successfully ap-
plied to the response of 
oating runways in open seas
in [1], [6] and near a shoreline in [7], and proven to be
e�cient and e�ective in parametric studies of 
oating
runways. In this paper, we apply the new method to the
hydroelastic response of a 
oating runway sheltered by
a breakwater.

We take advantage of the high length-to-depth ratio
of the mat-type structure and the 
uid layer underneath
in the present method. The 
oating runway and the

uid layer is modeled by the thin-plate theory and the
Green-Naghdi (GN) theory, respectively, the details of
which can be found in [8] and [9], respectively. When the
equations from the two theories are coupled, we can ob-
tain equations similar to the ones given in [10], but with
an improved dispersion relation, as shown in [11]. The
coupled equations can be factored into three Helmholtz
equations, whereas the wave motion in the outer domain
is governed by one Helmholtz equation. The Helmholtz
equation in the outer domain can e�ectively be solved
using the Green-function method, where the solutions
are given as line integrals along the edge of the runway
and the breakwater. In the inner region covered by the
mat, rather than using the integral equation method as
in [1] and [6], a more e�cient eigenfunction expansion
method is adopted from [2]. The Green functions for



these equations can simply be given as Hankel functions.
As a result, the computational cost for the hydroelastic
analysis of 
oating runways can now be comparable to
that used for analysis of harbor oscillations, which has
been readily applied for practical use since the early 70's
(see e.g., [12]).
The method developed is then applied to a 5-km-long


oating runway by �xing its length, beam, draft and
rigidity. Computations are made for incoming wave-
lengths from 100 m to 500m. Short-term extreme re-
sponse (vertical displacement) amplitudes are also ob-
tained for the signi�cant wave heights of 4m and 8m by
using the two-parameter Bretschneider spectrum. The
results show, in most cases, that the presence of the
breakwater a�ects the de
ections favorably. Exceptions
have been found when the wave direction is parallel to
the breakwater; an increase in runway de
ection of up to
40% is observed along the centerline of the runway in this
case. This phenomenon can be explained by trapping of
waves between the runway and breakwater.

II- Boundary-Value Problem

An elastic mat of rectangular plan geometry, with length,
L; beam, B; and draft d is considered, see Fig. 1. The
mat is freely 
oating on an inviscid 
uid-layer of constant
density � and depth h; and is under the action of linear
shallow-waterwaves of angular frequency ! and direction
�: The origin of the Cartesian system Oxyz is placed
at the center of the runway. The breakwater is de�ned
by a �nite length, Lb, at y = �B=2 � S, and constant
thickness Bb, at a distance of S from the breakwater-
side edge of the runway, and it extends to the sea 
oor
with vertical sides . Two regions which describe the 
uid
region (I) and the 
uid-plate region (II) are considered,
and these regions are separated by the juncture boundary
J:
We assume that the wavelength, �, of the incoming

waves is much larger than the wave amplitude, A; and
water depth (or kA � 1; kh � 1; where k is the wave
number), such that we can use the linear Green-Naghdi
theory (Level I) to model the motion of the 
uid layer.
We also assume that the thickness of the mat is much
smaller than the length and beam of the mat so that
we can employ the thin-plate theory that governs the
hydroelastic de
ections of the mat.
Within the scope of the linear theory, the motions of

the plate and 
uid can be assumed time harmonic with
the same angular frequency, !; of the incoming waves.
Hereafter, we will represent any time-harmonic function,
say f 0(x; y; t); as the real part of f(x; y)e�i!t by intro-
ducing a complex function, f(x; y) that depends on the
spatial variables only.
The rectangular mat is assumed to have a uniform

mass distribution (per unit area), m; and 
exural rigid-
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Figure 1: De�nition sketch of the problem.

ity (per unit width), D = EI=B; where E is Young's
modulus and I is the moment of inertia of plate cross
section. The vertical displacement, �(x; y); of the mat
is assumed to be governed by the thin-plate theory (see
e.g., [8]):

�m!2� +D�2� = pf ; (1)

where pf = pf (x; y) is the spatial part of the time-
harmonic pressure on the bottom of the plate and � =
@2=@x2+@2=@y2 is the two-dimensional Laplacian on the
horizontal plane.
Since the plate is freely 
oating, the bending moment

and shear force should vanish at the edges of the plate:

�� � (1� �) @
2�

@s2
= 0; (2)

@

@n

�
�� + (1� �) @

2�

@s2

�
= 0 on J;

where n and s denote the normal and tangential direc-
tions as seen in Fig. 1, and � is Poisson's ratio.
At the corners of the plate, there can be concentrated

shear force to compensate for the torsional moment along
the edges of the plate. The vanishing of this shear force
leads to

@2�

@x@y
= 0 at x = �L

2
and y = �B

2
: (3)



For the 
uid motion, we assume that the linear, Level
I GN equations govern the time-harmonic 
uid motion.
The horizontal velocity �eld V(x; y) and the vertical ve-
locity component w(x; y; z) are given in terms of the
mean velocity potential  (x; y) (see [11]):

V(x; y) = r (x; y); (4)

w(x; y; z) = �i!�(x; y)z + h

h
:

With this representation of the velocity �eld, the com-
bined mass and momentum equations for the linear,
Level I GN equations become

� + k2 =
k2

i!�
pf ; (5)

where the wave number, k; is given by

k2 =
3!2

3gh� h2!2 or !2 =
3ghk2

3 + h2k2
: (6)

The spatial part of the 
uid-top-surface displacement
in the 
uid region or the 
uid-plate region is given by a
complex function:

� =
h

i!
� : (7)

And the depth integrated pressure P (x; y) is given by

P (x; y) = i!�h : (8)

In Region I, the atmospheric pressure is neglected
without loss in generality, i.e., pf = 0; and therefore,
we have

� I + k2 I = 0; (9)

as the governing equation. On the the surface of break-
water, Sb,  I should satisfy the no-
ux condition:

@ I
@n

= 0; on Sb (10)

In Region II, if we couple the equations of motion of
the plate, (1), and the 
uid, (5), we obtain the following
governing equation:

D�3 II + �g� II �
�
m+

�h

3

�
!2� II (11)

+
�!2

h
 II = 0:

Boundary conditions should also be provided on other
boundaries: i) the juncture, J , boundary condition for
continuity, and ii) the radiation condition at in�nity.
Along the juncture boundary, J; the continuity of mass


ux and depth-mean pressure leads to the following
matching conditions:

@ I
@n

=
@ II
@n

;  I =  II on J; (12)

and these conditions will couple the solutions of equa-
tions (9) and (11) as we will discuss in detail in the next
section. The radiation condition has to be imposed on
part of  I ; this will also be discussed in the following
section.

III- Method of Solution

A- Decomposition of the hydroelastic problem
The governing equation in Region I, (9), is the well

known Helmholtz equation whose solution can be repre-
sented by a boundary integral along J; as will be shown
later. On the other hand, the governing equation in Re-
gion II, (11), is more complicated. Fortunately, however,
we can decompose equation (11) into three Helmholtz-
type equations by factorizing the di�erential operators
as shown by [6].
The boundary-value problem in Region II can then be

decomposed as

 II =  0 +  1 +  2; (13)

where  j ; j = 0; 1; 2; satisfy the following equation in
Region II:

(�� �2j ) j = 0; (14)

where �j are the roots of the characteristic equation of
(11). By de�ning a real, positive number kp such that
k2p = ��20; equation (14) for j = 0 can be written as

(� + k2p) 0 = 0; (15)

which is the Helmholtz equation for the hydroelastic
waves in Region II. The other two equations for j = 1; 2
give the evanescent solutions trapped near the edges of
the plate.
From equations (7), (13) and (14), the plate displace-

ment � is obtained as

� =
h

i!

2X
j=0

�2j j (16)

Then the free-edge conditions, (2), can be written in
terms of �j and  j .
In the 
uid region, Region I, the general solution can

be decomposed into the incoming wave potential,  w;
and the disturbance potential  3, i.e.,

 I =  w +  3; (17)



where  w is well known.
The potential  3 represents the sum of the di�raction

and radiation (which is due to the hydroelastic motions
of the plate) potentials. On the breakwater,  3 should
satisfy the no-
ux condition:

@ 3
@n

= �@ w
@n

; on Sb (18)

In the far �eld,  3 must also satisfy the Sommerfeld ra-
diation condition.
The matching conditions (12) can now be written as

2X
j=0

@ j
@n

� @ 3
@n

=
@ w
@n

; (19a)

2X
j=0

 j �  3 =  w on J: (19b)

B- Solutions of the Helmholtz equations
The hydroelastic problem to be solved is designated

by four Helmholtz equations for  0;  1;  2 and  3. The
�rst three Helmholtz equations are de�ned in a bounded
rectangular region and can easily be solved using the
separation of variables technique. On the other hand, the
Helmholtz equation in the outer domain can be treated
more easily by the Green-function method. Following
[2], we write  m (m = 0; 1; 2) as eigenfunction series
with unknown coe�cients to be determined. The series
expansions of  m satisfy the governing equations, (14),
and the corner conditions, (3).
In the outer domain, we write  3 as a line source dis-

tribution of the Green function along the edges of the
runway, J , and breakwater, Sb. To do this, we divide
the contour J [ Sb into a �nite number of segments,
I1; I2; : : : ; INp

.
Assuming that the source strength is constant on each

segment, and de�ning the arc length coordinate s along
J [ Sb, we can write

 3(x; y) =

NpX
n=1

�n

Z
In

G(x; �(s)) ds; (20)

where x = (x; y) is the �eld point and �(s) = (�(s); �(s))
is the source point on J [ Sb; and G(x; �) is the Green
function given in terms of the Hankel function (or We-
ber's solution).
The solutions satisfy the governing equations and

the boundary conditions except the free-edge conditions
given in (2) and the matching conditions in (19a, b). Fol-
lowing [2], the conditions (2) and (19a) are weakly satis-
�ed by taking the inner-product with the cosine modes
along all four edges of the runway. On the other hand,
the matching condition (19b) is satis�ed at the midpoints

xi = (xi; yi) of each segment Ii, placed along the edges
of runway. The reader is referred to [2] for further details
of the solution procedure.

C- Irregular-sea analysis
The random-sea response of the runway will be deter-

mined by assuming that the waves are long-crested, al-
though the short-crested wave case follows in a straight
forward manner. For a narrow-banded spectrum, the
wave heights follow the Rayleigh probability distribu-
tion, and thus the signi�cant response, Rs, is twice the
standard deviation of the response. The short-term ex-
treme amplitude response, Re, of runway de
ections, for
1-in-1000 maximum event, is then given by

Re = 1:86Rs = 3:72
p
m0; (21)

where m0 =
R
1

0
H2(!)S�(!) d!; H(!) is the transfer

function (or response amplitude operator as used here)
of the de
ection, i.e., H(!) = j�j=A, and S�(!) is the
incoming-wave spectrum. We use the two-parameter
Bretschneider spectrum (see e.g., [13]) in the calcula-
tions for the two irregular sea states that correspond
to the signi�cant wave height and peak period pairs of
Hs = 4m;Tp = 13s and Hs = 8m;Tp = 16s, see Fig. 2.
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Figure 2: Bretschneider spectra for the two sea states.

These approximate Sea States 6 and 7, and they were
chosen to make sure that there is insigni�cant wave en-
ergy at the small wave periods of about 8s and below
so that the linear GN equations would not loose their
applicability; see [14] for a discussion on the subject. In
fact, we see from (6) that, as kh ! 1; the wave fre-
quency has a cut-o� value, namely that ! ! 3g=h: In
the application of the method discussed next, we assume



that the water depth is h = 50m; so that, as kh ! 1;
! ! 0:7672rad/s or wave period goes to T ! 8:2s:

IV- APPLICATION AND DISCUSSION

To show the e�ects of a breakwater on the wave-induced
response of a 
oating runway, we consider the behav-
ior of a VLFS both in open seas (meaning, in the ab-
sence of any other `structure', such as a breakwater, or
a shoreline), and near a breakwater. The main dimen-
sions, water depth and the material properties are given
as L = 5km; B = 1km; d = 5m; h = 50m; D =
1:96� 1011N�m: The same runway has been studied in
open seas in [5], [6], and in the presence of a shoreline in
[7]. We set the length and thickness of the breakwater as
Lb = 6km and Bb = 25m: The breakwater can be seen
in Fig. 5a,c,e.
In the computations, the length of the segments,

I1;2;:::;Np
, was chosen such that there is at least ten seg-

ments in one wave length. The number of eigenfunc-
tions, Nx and Ny, was taken as 1/4th of the number of
segments along the longitudinal and transverse edges of
the runway, respectively, based on the experience gained
by the numerical experiments of [2]. Several schemes
have been introduced to enhance the e�ciency of the
numerical method further. Since the edge of the run-
way and breakwater are straight lines and are parallel
to each other (this is not a necessary condition in the
present method which is general), the evaluation of the
line integral given in (20) can be optimized if we use the
same length for the line segments to discretize the edges.
Then the cost for the evaluation of the Green function
can be reduced from O(N2) to O(N).
Numerical computations are carried out using a Pen-

tium II PC/450MHz. When T = 9s or L=� = 40, the
CPU time to evaluate the hydroelastic response of the
runway for 181 wave angles, 0o to 90o by 0:5o increments,
was 29min 20s when we used 960 line segments in open
seas. With the breakwater, we used 1924 segments, and
the CPU time was 1hr. Although it is di�cult to make
a direct comparison due to the di�erence in the com-
puters used, the computational time of 7hr without a
breakwater and 21hr with a breakwater were reported
by [15], where a higher-order boundary-element method
was used to analyze a 1600m� 400m 
oating runway.
We investigated the hydroelastic response of the run-

way for wave periods, T , varying between 8s and 24s,
wave angles, �, varying between 0o and 90o, and S =
500m. In the present method, we can obtain the de
ec-
tions at any point on the plate. However, the de
ections
along the centerline (jxj � 0:25L; y = 0) of the runway,
where the take-o� and landing operations would take
place, and at the four corners, where the hydroelastic
de
ections are most severe, are of particular concern.

The overall hydroelastic response amplitude operators
(de
ection amplitude per unit wave amplitude)of the
runway for 8s � T � 24s and 0o � � � 90o are shown by
surface-contour plots in Figs. 3 and 4 for the breakwater
distance of S = 500m: Note that the vertical scales of
the plots are di�erent in Figs. 3 and 4. It is seen that
the runway is well protected by the breakwater when
� > 15o. When � � 15o, the presence of the breakwater
increases the de
ection amplitudes on the runway, espe-
cially at the lower-right corner. The steep hills seen in
the plots of Figs. 3a and 4a, which are due to the trap-
ping of hydroelastic waves near the critical wave angle,
were explained by [6] and [11]. These hills mostly dis-
appear when we consider the presence of the breakwater
as seen in Figs. 3b and 4b. The signi�cant increase in
de
ections at the lower-right corner could also be found
along the runway edge facing the breakwater. Also ob-
served is the increase in the relative wave height at this
edge, which indicates once more that the increased re-
sponse is due to wave trapping between the runway and
breakwater.

The contour plots of the de
ections on the runway
and the wave elevation around the runway and break-
water, for T = 14s, is shown in Fig. 5. Again, the
runway is well protected in both the beam and quar-
tering seas. When � = 0o and there is no breakwater,
the hydroelastic waves on the runway attenuate as they
propagate along the length of the runway due to the ra-
diation of the gravity waves along the side edges of the
runway. When the breakwater is present, the radiated
waves bounce back to the runway and then back to the
breakwater again, and so forth. As a result, the gravity
waves are trapped in the `trench' between the runway
and breakwater, and prevent the attenuation of the hy-
droelastic waves by building trapped edge-waves along
the runway.

The RAOs obtained for the vertical displacements of
the runway can be used to determine the signi�cant and
short-term extreme responses in irregular waves as ex-
plained before. The short-term extreme amplitude val-
ues of the vertical displacements of the runway at the
lower-right corner and along (maximum value was cho-
sen) the center-line of the runway for the two sea states
are shown in Figs. 6 and 7, respectively. In these bar
charts, the darker bars denote the results obtained when
there is a breakwater 500m away from the runway.

As it has already been shown in [1], [2], [6] and [7], the
vertical displacements of the runway in the absence of a
breakwater are unacceptably large. The present results
leads to the same conclusion in irregular waves, namely
that a mat-type VLFS must be protected by one or more
breakwater(s). From Figs. 6 and 7, and as also men-
tioned before, the breakwater essentially ampli�es the
de
ections when the wave incidence angle is � � 15o,



and therefore a second breakwater to the left of the run-
way (see Fig. 1) must be placed to reduce the de
ections
to an acceptable level.

V- CONCLUSIONS

In this study, an e�cient numerical method based on
the linear Green-Naghdi theory is developed to investi-
gate the hydroelastic response of a mat-type VLFS shel-
tered by a breakwater in regular and irregular waves.
The computations show that this method is much more
e�cient than the conventional panel methods. The nu-
merical simulations are carried out for a wide range of
wave angles and wave lengths. The results indicate that
the structure is well protected by the breakwater except
when the wave incidence angle is less than about 15o. At
these small wave incidence angles, signi�cant increases
in de
ections along the edge of the runway, facing the
breakwater, are observed due to wave trapping between
the runway and breakwater. It is concluded that a mat-
type VLFS operating in restricted waters must be pro-
tected by breakwaters.
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(a) Without breakwater

(b) With breakwater

Figure 3: Surface-contour plots of maximum runway de-

ections along the center-line, S = 500m.

(a) Without breakwater

(b) With breakwater

Figure 4: Surface-contour plots of runway de
ections at
the lower-right corner, S = 500m.



(a) With breakwater, � = 0o (b) Without breakwater, � = 0o

(c) With breakwater, � = 45o (d) Without breakwater, � = 45o

(e) With breakwater, � = 90o (f) Without breakwater, � = 90o

Figure 5: Contour plots of <f�g=A: T = 14s. The breakwater in (a),(c) and (e) is placed at 500m from the runway.
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(b) Maximum along the centerline, �L=4 < x < L=4

Figure 6: Extreme vertical displacement amplitudes for
Hs = 4m; Tp = 13s.
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(a) Lower-right corner
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(b) Maximum along the centerline, �L=4 < x < L=4

Figure 7: Extreme vertical displacement amplitudes for
Hs = 8m; Tp = 16s.
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